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Abstract. In this paper the box constrained global optimization problem in presence of a limited 
solution time is considered. A method is studied based on a combination of multistart and singlestart 
which implies a decision sequence on the number of random points to be generated. Search strategies 
are numerically illustrated. Criteria are introduced to measure the performance of solution methods 
for the problem class. Moreover, the performance of search strategies, specifically the efficiency of 
generating random points is analyzed. 

Key words: Global optimization, random methods, heuristic solution strategy, local search, limited 
solution time. 

1. Introduction 

The box constrained global optimization problem, which is to find the global 
optimum of a real valued, in general multimodal objective function over a hyper- 
rectangle S c R  n, has been studied by many researchers. An efficient and often 
applied approach is to perform a local search from points derived from a ran- 
dom sample from a probability distribution over S. Attention has been paid to the 
derivation of stopping rules to determine the sample size. In many practical situ- 
ations the function evaluations necessary for the optimization can be rather time 
consuming, e.g. it may need minutes, as a special subroutine or program has to be 
run to determine the function value. In this case it is not uncommon that with a 
given amount of calculation time, e.g. a night or a weekend, one wants to reach 
a point in S with a function value as low as possible. The limited time to find a 
good solution can also be found in cases such as power station decisions, where 
the decision time is limited. In this paper we introduce for this case the term box 
constrained global optimization problem with a given budget of function evalua- 
tions, BCB problem for short. In Section 3 the multi singlestart method is presented 
and possible strategies within this method are discussed. In Section 4 criteria are 
introduced to measure the performance of solution methods for the problem class. 
The criteria are numerically illustrated for various methods and instances of the 
BCB problem. In Section 5 an analysis can be found on the performance of random 
search methods for the BCB problem. This is followed by a discussion of the results 
and conclusions in Section 6. 
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2. The Box Constrained Global Optimization Problem with a Limited 
Solution Time 

In many applications in engineering one wants to find the minimum of a real valued 
functionfover a region S defined by lower and upper bounds on the variables. (S 
can be called a closed hyperrectangle or a box.) 

m in / ( x )  
(BCP)  

x E S  

It will be assumed thatf(x) is a real valued possibly multiextremal continuous oracle 
function for which no derivatives or other global information such as a Lipschitz 
constant or concavity properties are available. Evaluating the function is similar to 
presenting parameter values to a black-box, possibly implemented in a subprogram, 
which calculates the function as a criterion on the parameters. Zhigljavsky (1991) 
introduced a classification on global optimization problems based on the prior 
information on the problem. In this classification the BCP problem is classified as 
type a), it is only known thatf is  continuous. 

In technical oriented literature, pragmatic approaches can be found to tackle the 
problem. See, e.g. Pronzato et al. (1984), Bohachevsky et al. (1986), Brazil and 
Krajevski (1987). In Mathematical Programming literature, analyses on various 
global optimization methods are presented. An overview on global optimization 
methods can be found in Trm and Zilinskas (1989). Most methods are based on 
the idea of globally exploring the feasible area (global search), e.g. by generat- 
ing points in the feasible area, and performing local searches to arrive possibly 
(hopefully) at the global optimum. In this approach the following elements can be 
distinguished: 

A .  GENERATING RANDOM POINTS 

If the target is to discover all optima, the purpose is to try to get starting points for 
the local search in every region of attraction. Following the idea that the region of 
attraction close to the global optimum contains the lowest function values, one can 
also only start a local search from the best point found during the global search. 
This idea will specifically be explored in this paper. 

B.  LOCAL SEARCH 

The purpose is to get a local optimum from a "good" starting point. 

C.  CLUSTERING 

By clustering, a part of the local minimizer structure can be discovered and one 
can save a number of function evaluations. 
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Focus of this paper is on the practical case, where there exists a budget for the 
computer time. Given this budget the search method should result in a function 
value (and corresponding point in S) as low as possible. It is assumed that the 
budget in computer time translates directly to a budget B on the number of function 
evaluations during the search process. This problem will be called the box con- 
strained global optimization problem with a given budget on function evaluations, 
the BCB problem. We concentrate on the combination of generating random points 
(global search) and local search, because these elements exist in the core of many 
methods. The solution method for this problem allocates budgets to local searches 
and to generating random points. A framework of this allocation is presented in 
the next section. 

3. Multi Singlestart 

In the literature on random search based methods the following approaches have 
been analyzed. 

-Pure Random Search (PRS) (see, e.g. Zabinsky and Smith, 1992): Generate 
a number N of random points from a probability distribution over S and evaluate 
them. The lowest point is an approximation of the global optimum. 
PRS 

1. Generate and evaluate random points in S 
2. Determine the best value Yr and incumbent minimizer Xr 

Random search methods have been studied, among others, by Zabinsky and Smith 
(1992), Zhigljavsky (1991), Romeijn (1992) and Klepper and Hendrix (1994), 
focusing mostly on adaptation of the distribution function over S. 

-Singlestart (SIS): Generate and evaluate random points over S and start one 
local search from the lowest point found. 
SIS 

1. Generate and evaluate random points in S 
2. Determine the best value Yr and incumbent minimizer xr 
3. Start a local search with starting point xr 

-Multistart (MUS): At every iteration, a random point is generated in S as a 
starting point for a local search. 
MUS 

Do for t=l to N 
1. Generate a random point xt in S 
2. Start a local search with starting point xt 

In Boender and Rinnooy Kan (1987) and Betro and Schoen (1987) studies can 
be found on when to stop the multistart process given some criteria on the tradeoff 
between reliability and computational effort. 

When we have a budget on the number of function evaluations, as in the BCB 
problem class, the application of the SIS method would consume as many function 
evaluations as possible for the global search, whereas the MUS method allocates 
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the budget towards local searches. The success of both methods depends on the 
instance of the BCB problem, which a priori is unknown. For an instance of the 
BCB problem with a few local optima and sufficient budget to perform some local 
searches, it may happen that multistart proves to be the best strategy. For a problem 
with many local optima which are much different from the global optimum, it may 
be better to perform one local search from the best of a long list of random points, 
than to spend all "ammunition" on identifying local optima. The existence of many 
local optima may occur in practical cases due to numerical effects, e.g. when an 
evaluation involves the numerical integration (fitting of continuous models) or 
inversion of a matrix (optimal design of experiments). 

The general message is that, if the surface o f f  is "rough", so that there are many 
local optima, then more effort should be put into global search, conversely if there 
are only a few optima, then more of the budget can be allocated to local searches. 
Due to the character of  the BCB problem, this function structure is of course 
unknown when the search starts. During the search process more of the structure 
is revealed and the allocation of budget to local searches and global search can be 
adapted. Here we get to the idea of multi singlestart (MSIS), where the number 
of random points to be evaluated depends on the structure revealed during the 
search. 

MSIS 

0. t=l 

1. Generate and evaluate Nt random points on S. 

2. Identify the best point xrt out of the Nt points. 

3. Perform a local search with starting point xrt • 

4. If budget is left, t=t+ 1 and go to 1. 

At every stage t in step 1, the number of random points Nt is chosen before the 
next local search is performed from the best of those points (if enough budge t Bt 
is left). So more or less effort can be put into the global search. 

The number of function evaluations Ft necessary to perform one local search 
does not only depend on tolerances, but also on the starting point and the function 
under consideration. Thus, Ft can be regarded as a random variable. During the 
search, estimates of (the expected value of) Ft become available. Note that Ft tends 
to decrease when Nt increases, due to the fact that part of the local search work is 
taken over by the random search. 

As a variant of the decision parameter Nt we introduce the parameter Kt. 
Kt: number of local searches (iterations) intended to be performed before the 

budget is exhausted. 
If the part of  the budget which is not used for local searches is equally divid- 

ed over the intended iterations the number of random points Nt can be derived 
f r o m  

= - - - ? t + l  . . . . .  
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A uniform estimate F for the expected number of function evaluations for a local 
search reduces the formula to: 

= Bt/K  - F .  

The maximum number of local searches that can be performed is estimated by 
Kmaxt = [Bt/F] . At every decision stage t, Kt is chosen between 1 and Kmaxt . 
The SIS method corresponds to Kt=l and MUS can be approximated by choosing 
Kt=Kmaxt. 

We now define a MSIS strategy as a choice rule to determine Nt (or Kt alterna- 
tively) at every iteration from the information generated by the previous iterations. 
At step 1 of the algorithm among others the following information is available: 

Be : budget left 

Nloct : number of different local optima found 

t-1 : number of local searches performed 

F : expected (estimate) number of function evaluations necessary for one 

local search 

gmaxt  : [BtlF] 
Now, various strategies can be constructed. If we follow the general idea 

described above, then if many optima are found, Kt should be tending to 1, which 
means the pure SIS strategy. If the prior expectation is the existence of many local 
optima, the corresponding strategy is to have KI=I. One problem is that there is 
no good estimate for Ft when no local searches have been performed. Another 
approach is to start with the hypothesis that there exists only one local optimum. 
At the first and second iteration a local search with one random starting point 
(NI=N2=I) can be performed. If the local optima found are equal, the hypothesis 
still holds and one can proceed with multistart in an attempt to check the hypo- 
thesis by discovering other local optima. If they are not equal, there are apparently 
multiple optima and, in an attempt to detect the region of attraction of the global 
optimum, Nt can be increased. Another possibility is to base the choice of Nt on an 
estimate of the number of undetected local optima, see, e.g. Boender and Rinnooy 
Kan (1987). 

To illustrate the idea of MSIS strategies we introduce the following rule which 
will be called/3 heuristic (as depending on the parameter/3 >_0) : 

( K m a x t -  1 ) ( U l o c t -  1) 
Kt = Kmaxt  - t - - I  

(Nloct - 1) +/3N--i-~c t 

The parameter/3 weights the relative number of different optima found with 
respect to the number of local searches performed, in the formula. Moreover, if/3 
is very large, the rule approximates pure multistart (Kt -+Kmaxt) and if/3 is taken 
to be zero the rule becomes the singlestart strategy. 

After the introduction of the BCB problem and possible solution methods there 
is a need to establish performance criteria. 
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4. Performance Criteria for the BCB Problem 

In the OR literature it is common to use the number of function evaluations used 
and the indicator whether the global optimum has been found, as a performance 
criterion for global optimization methods. For the BCB problem the objective is 
to reach a point as good as possible given budget B, hopefully it is the global 
optimum. So the best function value found is the criterion. The score on these 
classical criteria does not only depend on the local search method, tolerances and 
stopping criteria, but in random search techniques also on the random series used. 
To filter out this random effect, the expected values for those classical criteria are 
suggested in this paper to be applied as criteria for the BCB problem. 

PG(B) : the probability of a search method reaching the global optimum 

within budget B. 

ER(B) : expectation of the record value found with budget B. 

The possibility to analyze the behaviour of algorithms with respect to the criteria 
is limited. In general, estimates for these criteria for various search strategies on 
test functions can be determined by Monte Carlo simulation. Only for multistart the 
probability of reaching the global optimum can also be approximated analytically 
by the following idea. Let D* be the region of attraction of the global optimum 
and let u be its relative size. Let F be the average number of function evaluations 
necessary to perform one local search (which is itself stochastic) and B the bud- 
get. The number of local searches that carl be executed is [B/F]. This makes the 
probability of reaching the global minimum at least 

PG(B) = 1 - (1 - ,)[B/F]. (1) 

The PG(B) and ER(B) criteria are illustrated here for various instances of the 
BCB problem. Monte Carlo simulations are done to estimate the score on the 
two criteria for the ¢Lheuristic for some values of • and for the MUS and SIS 
strategy. For the ~-heuristic we choose NI=N2= 1. This implies that for low budgets 
the heuristic performs exactly the same as MUS. For SIS an estimate should be 
available for the number of function evaluations necessary for one local search. 

Test functions for which the number of local optima varies can be found, e.g. 
in TSrn and Zilinskas 0989) .  To see any difference, test functions with many 
optima are of interest. Therefore the Rastrigin function (50 optima), the Shekel 
functions (5, 7 or 10 optima) and the Goldstein-Price function are taken from this 
reference. 

For the local optimization a variant of Powell's method (Powell, 1964), adapted 
for the box constraints, is used. In the linesearch initially small steps are taken in an 
attempt not to miss the nearest optimum. The stopping criterion is defined on the 
progress in function value. Moreover, after every linesearch it is checked whether 
the iterate is close to an optimum already found. The tolerance of being close to an 
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Fig. 1. Probability to reach the optimum for multistart. 

optimum is taken as 1 percent of the componentwise range of the variables. This 
check speeds up the search process, and causes Ft to decrease when the iterations 
proceed. 

The estimation of the criteria PG(B) and ER(B) is done by running the random 
search many times with various random series for fixed values of the budget B. For 
lower values of B, the fluctuation of the criteria is larger, does more depend on the 
random series, than for higher values of the budget where the probability PG(B) 
approaches 1. Therefore more replications were done (10,000) for small values of 
B than for large values of B (200). 

As a numerical illustration we applied MUS to the Rastrigin test function (see 
T6rn and Zilinskas 1989). The relative size of the region of attraction D* for the 
local optimizer used was u=0.0346. In Figure 1 the theoretical smooth curve of 
(1) is confronted with two curves that were found by Monte Carlo simulation. The 
performance of MUS, SIS and the r-heuristic have been estimated by Monte Carlo 
simulation for the Rastrigin test function. The results are given by Figures 2 and 
3. 

The results illustrate the idea of the criteria. Given an instance of the BCB 
problem, every solution method has its PG(B) and ER(B) curve. For the five 
solution methods (MSIS strategies) for which the curve has been approximated, 
the r-heuristic with a value of/3 = 10 performs the best for this test function. This 
illustrates how the criteria introduced can be used to judge on search strategies for 
the BCB problem: A particular method is better than another for a certain instance 
of the BCB problem, if its curve PG(B) is higher or its ER(B) curve is lower. In 
Figure 3 we see that from the five strategies, the/3=10 rule has the best expected 
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Fig. 3. Results of criterion ER(B) for the Rastrigin function for various strategies. 

value for the best function value found. The global minimum has an objective 
function value of - 2 .  

What determines the success of generating random points in the context of 
increasing the probability that the global optimum is detected? We first illustrate 
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Fig. 4. Results of criterion PG(B) for the Goldstein-Price function for various strategies. 

the difference in efficiency of generating points by two extreme numerical exam- 
pies. 

In Section 5 we will try to analyse this extreme difference. Figures 4 and 5 give 
the performance, according to the PG(B) criterion, of the five strategies for the 
Shekel-5 function and the Goldstein-Price function respectively. The results show 
that generating many random points is efficient for the Goldstein-Price function, 
whereas it apparently is not efficient for the Shekel-5 test function. 

This illustration leads to the question whether there exists a MSIS strategy, 
or more generally a method, which performs better for all instances of the BCB 
problem for all values of the budget. To formalise this question we define the 
concept of dominating methods. A method is called PG-Dominating if for all 
instances of the BCB problem, PG(B) is higher than (or equals) PG(B) of all other 
methods for all values of budget B. 

5. Analysis of Random Search Methods for the BCB Problem 

Can a dominating method exist for the BCB problem? To answer this question 
we first analyze for which cases it is profitable to put more effort in global search 
than is done by multistart. As mentioned in Section 2, the objective of generating 
random points (or increasing N) is to increase the probability that the starting point 
of the local search is situated in D*. We use the following notation. The relative 
size of a level set is defined as 

#(y) --- P{ f (x )  <_ y Ix E S}. 
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Results of criterion PG(B) for the Shekel-5 function for various strategies. 

When x is uniformly distributed over S, y =fix) is a random variable with cumulative 
density function #(y) and probability density function #'(y). By performing a 
random search with N points the probability density function of the record value 
Yr (lowest function value found) is 

M~N(yr) = N# ' (y r ) (1  - #(y~))N-l .  

The success of a global search depends on the probability that the point Xr corre- 
sponding to Yr is in the fight region of attraction, D*. We define 

¢(Y) ----- P { x  e D* I f ( x )  = Y} 

as the probability that a point x is in the right region of attraction given that x is 
situated at a contour with height y. The efficiency of going deeper in the level sets 
by generating random points depends on the shape of ¢(y). If one random starting 
point is used then the probability to reach the global optimum equals the relative 
size u of D, :  

u = ¢(y)d#(y)  (2) 

in which y, = minxe s f ( x )  and y* = maxze s f (x ) .  
By first generating N points and then starting a local search from the lowest of 

these points, the probability of reaching the global optimum is 

P,--gN -~ ¢(y)M'N(y)dy. (3) 
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Essential in the analysis is that PSlv may be worse (lower) than v. This occurs when 
there is a wide relatively deep level set of which a large part does not belong to 
D*. As an example from the standard test functions (see TOm and Zilinskas, 1989) 
the Shekel functions have this characteristic, as we have seen from Figure 5. This 
implies that SIS performs very bad versus MUS. The Goldstein-Price function 
gives the opposite result, see Figure 4. 

The function ¢(y) is apparently very different for those two examples. However 
#(y) also differs for every problem. To make ¢(y) more comparable, we introduce 
the following transformation. Let z be a uniformly distributed random variable 
defined as z = #(y). In other words/z-l(z) defines the quantiles of y. Now equation 
(2) can be written as 

v -~ ¢(y)d#(y)  = ¢(#-1 (z))dz. (4) 

Every value of z is "as probable". We will call the function ¢(z) = ¢(#- l (z))  
a characteristic function ( not to be confused with the probabilistic meaning), as 
it contains all information to calculate (3) and consequently gives the exact infor- 
mation on the efficiency of generating random points. Note that ¢(z) approaches 1 
when z goes to 0. Equation (3) can be replaced by 

/0' Peon = ~I,(z)g(1 - z)(g-1)dz.  (5) 

The characteristic function ~(z) determines the success of generating random points 
and contains much more information than, e.g. the number of optima. It should be 
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mentioned that the information of ~(z) is in general not available, so it cannot be 
applied in an algorithmic framework. It has been introduced for analytic reasons 
here. For illustrative purposes the function ~(z) is approximated numerically by 
Monte Carlo simulation for the two example functions. In Figures 6 and 7 numerical 
approximations can be found. 
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In limit ~(z) approaches 1 when z goes to zero. However for the Shekel- 
5 function this limit is that distant that it cannot be observed in the numerical 
estimates. Increasing the number of random points leads the point xr away from 
the right region of attraction D*. For the Goldstein-Price function generating 
random points improves the probability that the global optimum is reached. This 
shows that given the information which becomes available during the search, it 
is impossible to determine a search strategy which performs better than all other 
strategies for all instances of the BCB problem; a PG-dominating method does not 
exist. We used the concept of the characteristic function to show that MUS has to 
be the optimal method over all possible MSIS strategies for the Shekel-5 problem. 
This strategy is not optimal for other instances of the BCB problem. 

Furthermore, we have seen that knowledge of the characteristic function, which 
for practical problem solving will be out of the question (given the budget on 
function evaluations), gives by calculating (5) how the probability PSN of reaching 
the global optimum changes, when the lowest point xr of a random search with N 
points is used as a starting point for a local search. This is illustrated by Figures 
8 and 9. In those figures, PS1 equals v, the relative size of the region of attraction 
of the global optimum. The well known rule from stochastic methods that PS 
1 when N ~ c~, applies here, but cannot be derived from Figure 9. The analysis 
shows that the knowledge of the characteristic function is sufficient to determine 
the optimal sample size before performing a random search. 

Under the assumption that the number of function evaluations F for one local 
search is known, it is possible to determine the sample size which maximizes the 
probability to reach the global optimum with a budget of B function evaluations. 
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Let K be the number of local searches to be performed in budget B and F be the 
number of  function evaluations in one local search. As shown in Section 3, N can 
be taken as: 

:V=B/K-F 

Given PSN, the probability to reach the optimum when K local searches are per- 
formed is: 

PG(B) = 1 - (1 - PSB/K_F) K. (6) 

This analysis shows that knowledge of ~'(z) and F is sufficient to determine the 
optimal sample size for criterion PG(B) by maximizing (6) over K. It is a new 
question how estimates of • can be used in a practical algorithmic construction 
and whether it is worthwhile to do so. 

6. Conclusions 

In many practical situations one wants to find the minimum of a multiextremal 
function with a limited amount of calculation time. The name box constrained 
global optimization problem with a budget on the number of function evaluations 
(BCB) is introduced. Solving this problem with a method based on generating 
random points in the feasible area and local searches, implies a decision sequence 
on the size of the random sample at every iteration. The success of a search strategy 
for this decision sequence is defined as the probability that the global optimum 
has been detected within the budget of calculation time. Another criterion is the 
expected record value obtained within the budget. The success of increasing the 
sample is determined by the form of a so called characteristic function which 
depends on the problem to be solved and the local optimizer applied, It appears 
to be impossible to construct a dominating method, i.e. a method which performs 
better than all other methods for all instances of the BCB problem. 
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